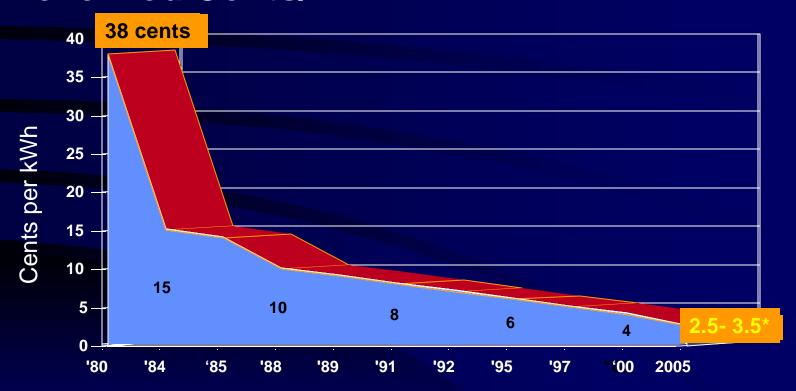


Opportunities for Wind Power at Army Facilities


Army World Environment and Energy Conference
Kathy Belyeu
American Wind Energy Association
December 6, 2000

Wind Industry Overview

- Explosive growth between 1994 and 1999 at 32% per year. 25% annual growth projected through 2009
- Projects are operating at greater than 35% capacity factors at good wind sites
- Over 98-99% availability
- Select projects are delivering ~3 cents/kWh contracts (including Production Tax Credit)



Wind Power Taking Off Worldwide

Wind Energy Cost

Cost of Wind-Generated Electricity 1980 to 2005 Levelized Cents/kWh

- •Assumptions: Levelized cost at excellent wind sites, large project size,
- •not including PTC (post 1994)

Cost Drivers

- Wind resource
- Size of project
 - Transaction and mobilization costs are substantially fixed
 - Smaller projects cost more per unit of output
- Financing and power purchase terms
 - Surety and term of power sale

Wind Resource

Cost of Energy and Wind Speed

Assuming the same size project, the better the wind resource, the lower the cost

Project Size

Cost of Energy – Large Wind farm v. Small

Assuming the same wind speed of 8.08 M/S, a large wind farm is more economical

Advanced Technology and Scale Economies Drive Down Cost

	<u> 1981</u>	2000
Rated Capacity	25kW	1,650kW
Rotor Diameter	10 meters	71 meters
Total Cost (\$000)	\$65	\$1,300
Cost Per kW	\$2,600	\$790
Output, MWh/year	45	5,600

120 x the energy at 20 x the cost!

Driving Costs Down Further

- Advancements in turbine technology
- Project financing improvements
- Increasing project sizes

Barriers to the Army's Greater Use of Wind Power -- Operational

- Potential interference with facility mission
- Extensive permitting requirements
- Limited information on wind resources
- Lack of incentive for base commanders to front costs for resource studies, etc.

Barriers to the Army's Greater Use of Wind Power -- Financial

- Army bases often have negotiated very low rates for power
- Facilities often operating with fixed or declining budgets, especially for energy purchases
- Construction and Operating budgets are separate
- Most efficiency savings are owed to ESCO's or revert to headquarters for reallocation (rather than remaining at the installation level)

Opportunities for Wind Power to Serve the Army's Mission

- Attain emissions-reduction goals
- Diversify fuel portfolio/reduce fuel price volatility risk
- Save money

Emissions Reductions

Reduced Greenhouse Gas Emissions

One project the size of the San Clemente Island project (3 225-kW turbines) displaces almost 3 million lbs of CO2 per year.

- Reduced Air Pollution
 - That 675 kW project would displace
 - almost 10,000 lbs of NOx per year
 - 15,000 lbs of SOx
 - Particulate matter air pollution
 - Mercury fallout

Reduce Fuel Price Volatility Risk

- This summer, gas prices rose from about \$2.15 Mcf to over \$5 Mcf
- The vast majority of new electricity generation is expected to natural gas-fired, increasing demand pressure
- Continued tight electricity markets are likely to contribute to high and increasingly volatile electricity and natural gas prices*

*from analyst Matthew R. Simmons

Cost Savings

- Where the price of fuel currently used is high
- Where the **wind resource** opportunity is good

Recommendations

- 1. Install small-wind systems in off-grid, remote applications to save on diesel fuel purchase, shipping & storage costs
- 2. Contract with private developers to construct wind plant on base
- 3. Contract for long-term power purchase from wind plant development near base

Recommendation #1— Army generates

• In places where Army is generating power, especially off-grid, remote applications

Purchase small wind systems from supplier

Small Wind Turbines Should be Considered When:

- •The Grid Must be Extended More Than 1 km (0.62 miles), or
- •Costs of Conventional Power Exceed 20¢/kWh,
- Annual Consumption Exceeds 200 kWh, and
- •Wind Resources are 4.4 m/s (9.8 mph; DOE Class 1) or Better

Why Small Wind?

- Lower Life-Cycle Costs (nearly always)
- Lower First Costs (sometimes)
- Reduced Operations and Support Burden

CH-46 Delivering Fuel and Water, East Timor

~ \$5,000 per hour

Bergey 1.5 kW Delivering Water (120,000 l/day), West Timor

~ \$5,000 one time

Diesels are Great, but ...

- DoD: 83,100 Mobile Generators
 - Value of "fleet" exceeds \$1.4 billion
 - Average age is 15 24 years (smallest units are oldest)
- 64,000 (77%) Fielded by U.S. Army
 - 40,800 (64%) are 5 kW or less
 - Surveys show ~ 50% are operated at < 20% load
 - Surveys show 60-70% of maintenance problems are due to "wetstacking", caused by generator underloading
 - Haiti experience: Only 89% operational readiness
- Healthy appetite for fuel ... logistics and storage
- These problems mirror the problems we have seen, and remedied, in thousands of non-military remote power installations.

Small Stationary Systems

 Misc. remote DoD facilities for training, communications, monitoring, etc.

- Wind attractive almost anyplace fuel is flown in
- Mostly new construction retrofits have occurred, but with significant non-DoD funding

Navy TACTS Platforms

3 Platforms 60 Miles off Savannah, Georgia

- Equipment: 2 x BWC 7.5 kW Wind Turbines, 5 kW Solar, ~ 100 kWh Battery Bank, 15 kW Diesel
- Performance: ~ 60 kWh / Day at 120 VAC
- Customer: U.S. Navy
- Installation: First unit Nov. 1993. Remaining five Nov. 1997
- Results: Almost no diesel usage. BWC wind turbines now being added to other TACTS sites.

Recommendation #2 – Build On Army Land

Private Sector Builds on Army Bases

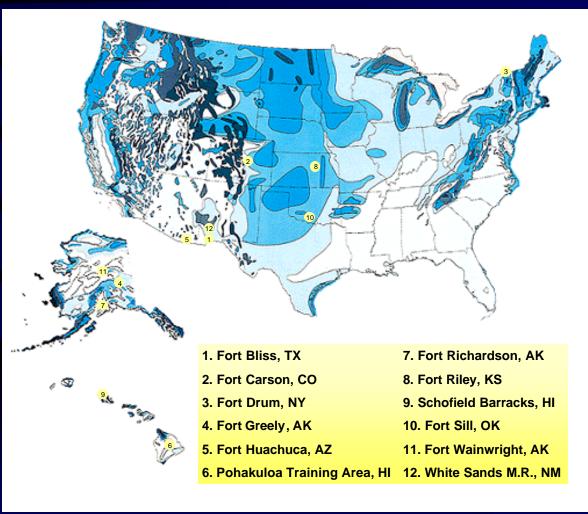
- Project construction and operation would be at the expense of the independent power producer
- Landowner royalties or revenue-sharing could offset any initial cost increase
- Wind turbines' visibility may be a negative and/or a positive

San Clemente Island, CA

- U.S. Navy island 53 miles off San Diego
- Average demand 850-950 kW
- 3 225-kW NEG Micon turbines installed

Ascension Island

- U.S. Air Force installation on British island in mid-Atlantic ocean, built in 1996
- Generated 351,000 kWh in the first month and a half of operation, displacing 28,000 gallons of diesel fuel
- Fuel savings expected to fully pay for installation in eight to nine years -- "free" power for remainder of 25-30-yr. life



Recommendation #3 – Long-Term Purchase Agreement

- Purchase Wind Energy from an Energy Service
 Provider or from a Wind Developer
- Can take advantage of best wind resource sites
- Permitting can be accomplished more quickly
- Currently, only available in states that are in the process of deregulation

Opportunity

Wind
Resource
for Army
Windfarms

Want to Know More About Wind Power?

Contact the AWEA Web Site or Email address at:

www.AWEA.org

Windmail@awea.org

Or write to

American Wind Energy Association

122 C St, NW, Suite 380

Washington, DC 20001

